

Mission profile based life time estimation of power devices using power cycling testing

Andras Vass-Varnai Attila Szel, Zoltan Sarkany

Overview

- Short introduction to the industrial challenges in power electronics
- The flow of application based lifetime estimation
 Simulation model calibration with the structure functions
- Power cycling experimental examples
 - Concurrent failure modes

Insulated Gate Bipolar Transistors (IGBT) / Power Electronics Applications

Motor drives

- Commercial motor drives
- Motor drives discrete
- Motor drives modules
- Motor drives IPM

UPS

- UPS discrete
- UPS modules

PhotoVoltaic inverters

- Commercial PV
- Residential PV
- Solar farms

Electric Vehicles/Hybrids

- PHEV/EV
- Full HEV
- Mild HEV
- Micro HEV
- EV/HEV charging stations

Classification by Yole Développement

Railway traction

- Rail traction inverters
- Rail auxiliary inverters

Wind turbines

- Wind turbine >1MW
- Residential/commercial wind turbines

Industrial applications

- Welding
- Other industrial

Consumer applications

- Induction heating
- DSC–DSLR camera flash
- Air conditioner
- Washing machine
- Microwave oven
- Flat panel (LCD/PDP)
- Lighting supplies
- Other home appliances

Others

- Other power supplies (SMPS)
- Automotive ignition
- Marine propulsion
- Medical applications
- Defibrillators
- Avionics converters
- Heavy duty vehicles
- Grid -T&D

IGBT Market Forecast by Segment

Source: Yole Developpement - IGBT Markets & Application Trends, 2013

IGBT technology trend – Power densities are increasing

Focus on Power Electronics Module Reliability

- Examples:
 - Hybrid & electric vehicle (EV)
 - Railway traction applications 30+ year expected lifetime
 - Reusable energy production, e.g., wind turbines, solar
- 10's of thousands to millions of cycles required
- Issue is thermally induced degradations due to power cycling & heat
 - Wire bond degradation
 - Metallization layer mismatch
 - Solder fatigue
 - Die and substrate cracks

The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large

- The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large
- Solder joint between the base plate and the back-side metallization of the substrate

- The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large
- Die attach There was extensive research in this field towards better materials and processes

- The thermo-mechanical stress is the largest when the temperature difference between layers is high and the contact surface is large
- Bond wires Small area but high temperature swing and CTE mismatch make it vulnerable

Introducing the Industry-Unique MicReD Industrial Power Tester 1500A

New PWTs: 75% power increase

New Launches

- PWT 1800A 12C 12V (flagship)
- PWT 3600A 12C 6V (power grid and locomotives)

FY16 • PWT 1500A 3C/12C 8V

Going from 12kW to 21kW

PWT offerings

Introducing the Industry-Unique MicReD Industrial Power Tester 1500A

- Industrial implementation of Mentor's industry-unique MicReD T3Ster technology
- Provides fully automated power testing / cycling
- Simple touch-screen user interface
- For MOSFET, IGBT and generic two-pole devices – up to 3x4 simultaneously
- Records diagnostic information during test:
 - Current, voltage and die temperature sensing
 - "Structure Function" identifies changes / failures in package structure
- Supports package development, reliability testing, and batch checking of incoming parts before production

Example: Electric traction in a car

Definition of the application – The driving profile

- For the design of the power module the exact definition of the task is necessary
- Possible input data:
 - Electrical data: V, I
 - Velocity v.s. time functions
- Driving profile examples Test standards defined by the US EPA
 - **FTP-75** for the general city driving
 - UDDS: Inside the city for light vehicles
 - US06: Aggressive driver
 - HWFET: Highway, standard driver

THE FLOW OF LIFETIME ESTIMATION, BASED ON THE COMBINATION OF SIMULATION AND MEASUREMENT

1. Overview of the flow

2. Power profile calculation, based on mission profile \rightarrow

- Forces used for modeling the movement of a car
 - Rolling resistance: $F_g = \mu_g mg$
 - Air resistance: $F_{air} = \frac{1}{2}\rho A C_d v^2$
 - Acceleration resistance: $F_{acc} = ma$
 - Elevating resistance: $F_{elev} = mgsin(\varphi)$ (neglected)
- Engine power: $P_{engine}(t) = \Sigma F v(t)$
- ► Total required power: $P_{total}(t) = \frac{P_m(t)}{\eta}$ (η efficiency)
- **Power loss**: $P_v(t) = P_{total}(t) P_{engine}(t)$
 - $P_{v}(t)$ is partially the conduction and switching loss of the IGBT

3. Temperature profile simulation

 Issues with modeling multi-heatsource packages

4. Why to calibrate simulation model...

Calibrated model SF comparison:

Uncalibrated Model that produces a steady state Tj within 0.5% of the calibrated model. SF comparison is somewhat reasonable looking at first glance:

Simulate both calibrated and uncalibrated model with an arbitrary power profile:

And compare the responses. Design 28 is the uncalibrated model. The peak at 0.25s is off by \sim 24%.

Figure 5: Experimental results (markers) and the analytical model fit on the individual results (solid lines)

5. Temperature histogram calculation

 Count the individual temperature gradient components in the temperature profile – future weighting factor in cycling

A SHORT DETOUR : SIMULATION MODEL CALIBRATION WITH THE STRUCTURE FUNCTIONS

T3Ster - Transient Response Measurements

 T3Ster is used to measure the transient thermal response of a package to a change in its power dissipation

T3Ster - Transient Response Measurements

T3Ster Master software converts the measured thermal response into a Structure Function. One way to interpret this is the RC path that the heat takes from the junction, through the device, and to the ambient.

T3Ster - Transient Response Measurements

 Each section of the Structure Function path represents physical objects the heat encounters. There is a correlation between physical objects and sections of the RC path.

FIoTHERM - Transient Response Recording

- A detailed FloTHERM model of the package can be simulated in a virtual test environment to predict a transient response as well.
- New in FloTHERM v11.1, the simulated transient response is converted into Structure Functions using exactly the same methods as T3Ster Master.
- This allows direct comparison of simulation to measurement in a format that correlates to the physical structure of the package.

Model Calibration

- To ensure model accuracy the FloTHERM Structure Function <u>must</u> match the T3Ster Structure Function across all package elements.
 - Only then are we ensured that each object in the package is modelled correctly.
 - Only then are we ensured that the 3D temperature field is accurate
 - Only then are we ensured the FloTHERM model includes all package time constants and will respond correctly for all driving power profiles.

Example : determining the temperature profile of an IGBT by 3D model simulation

- Create a 3D numerical model of the package
 - Possible problems: Some geometrical or material parameters may be unknown or inaccurate
- Increasing the accuracy by using thermal transient testing: model calibration

Model calibration with the structure functions

Initial model vs. Measurement before the cycling started

Calibration of the die region

T3Ster Master: cumulative structure function(s)

Resistance change of the ceramics

T3Ster Master: cumulative structure function(s)

Calibration of the TIM2

Final, calibrated model

Ready to be used for accurate thermal simulation...

ACCELERATED AGEING BY MONITORED POWER CYCLING

Traditional Power Cycle Failure Testing

- Traditional Process:
 - Run set number of power cycles
 - Take to lab and test for failure
 - Repeat power cycling/lab testing cycle until failure
 - Take to lab and determine reason for failure

- Issues:
 - Repetitive cycle/lab test process = long times
 - No "real time" indication of failure in progress – only post mortem
 - Failure cause requires lab analysis
 - typically internal to package

MicRed accelerated ageing: Continuously monitored to understand failure mechanisms

The ageing process (cycling) has to be simulation based

 Temperature gradient development during power cycling

6. Measure points of the lifetime curves and estimate lifetime

- Arrhenius model: $N_f = e^{\left(\frac{E_a}{k_b \cdot T}\right)}$
- Extended Arrhenius models: - $N_f(\Delta T) = A \cdot (\Delta T_j)^{\alpha} \cdot e^{\left(\frac{E_a}{k_b \cdot T}\right)}$ - $N_f(\Delta T) = A \cdot f^{\beta} \cdot (\Delta T_j)^{\alpha} \cdot e^{\left(\frac{E_a}{k_b \cdot T}\right)}$

Cycles to failure

(used by: F* Company)

(used by: I* Company)

Experiment I. – Setup and parameters

- Devices mounted on temperature controlled cold plate
- Base plate temperature: 25°C
- Targeted junction temperature: 125°C
- Constant current regardless of the voltage change
- Transient test after every 200 power cycles

	Sample 0-3
\mathbf{I}_{load}	25 A
Р	~200 W
ΔΤ	~100 °C
Control Mode	const. I
T _{Heating}	3 s
T _{Cooling}	10 s

Experiment I. – Results 1.

- All devices failed after approx. 40,000 power cycles
- Broken bond-wires and burnt areas on the chip surface observed
- In fact all IGBTs ultimately failed due to the overheating and damage of the gate-oxide:

Experiment I. – Results 2.

Continuous degradation of the die-attach layer can be observed after ~10,000 to 15,000 cycles

41 Andras V.V., Mission profile based life time estimation

Experiment I. – Results 2.

Various control strategies

- Constant current
 - Degradation has immediate impact on resulting temperature swing, no compensation
 - Most severe strategy

- Constant current, change of the cold-plate's HTC
 - Changes the flow rate of the coolant liquid in sync with the cycles
 - Helps to create a temperature swing at the case to induce failures in the base plate solder
 - For longer cycle times
- Constant power, P_V
 - Constant t_{on} and t_{off}
 - Power losses are held constant by controlling the driving current
- Constant ΔT_J=Const
 - Driving current control

Experiment II. – Setup and parameters

- Devices mounted on temperature controlled cold plate
- Base plate temperature: 25 °C
- Various control strategies*
- Transient test after every 250 power cycles

Power		Initial parameters (avg(11000 cyc))			Cycles	
cycling strategy	Device	I [A]	P [W]	DT [°C]	T _{j,max} [°C]	to-failure
Const	A4	90.0	389.6	120.1	156.9	21570
	B4	87.2	379.1	119.9	157.2	24837
	C4	89.1	388.2	119.8	157.2	24892
Const	A3	93.7	399.1	119.9	158	29226
	B3	90.4	399.1	119.7	156	31081
Р	C3	90.3	399.1	118.9	155	29340
Const	A2	91.2	411.1	119.9	155	35406
	B2	90.5	396.8	110.9	144.5	57329
ΔΙ	C2	91.1	382.1	119.3	152.5	39149

Cycle numbers to failure using different control strategies

Structure functions to identify die attach degradation

Cycling number vs. electric parameters for constant ΔP (left) and constant ΔT (right)

Example: Effect of temperature differences on lifetime

- The same parameters used for IGBT cycling
- ΔTj is kept constant, but 10°C difference between two cases

Significant difference in the lifetime

- 120°C: ~36000 cycles
- 110°C: ~58000 cycles
- 2 points of the lifetime curve are available

Experiment III. – Setup and parameters

- Devices mounted on temperature controlled cold plate
- Base plate temperature: 25 °C
- Targeted junction temperature change : 105 °C
- Various control strategies*
- Transient test after every 250 power cycles
- Number of additional parameters monitored continuously: I_{cycle} , P, V_{on}, V_{hot}, V_{cold}, T_{hot}, T_{cold}, ΔT_{J} , ΔT_{J} /P

	IGBT1	IGBT2	IGBT3
I _{load}	68 A	64.4 A	65 A
Р	240 W	233 W	246 W
ΔT_{J}	105 °C	105 °C	105 °C
*Control Mode	const. I	const. P	const. ΔT_J
T _{Heating}	3 s		
T _{Cooling}	17 s		

Experiment III. – Results 1.

Well controlled test parameters

- Variance of the controlled parameter is less than 0.1% (0.1W, 0.1 $^{\circ}$ C)

Although number of investigated samples was too low to draw any quantitative conclusions, a significant difference can be observed in the cycles to failure for the devices:
Cycles until total

	cjeres antin total
	failure of the device
Constant heating current (I)	~45 000
Constant heating power (P)	~65 000
Constant junction temperature change (ΔT_{J})	~70 000

Experiment III. – Results 2.

■ No sign of degradation in the heat flow path – variation of R_{th} is below 0.5%

Experiment IV. – Bond wire degradation

Ρ

Т

- I_{D max}=160A
- Device driven is saturation mode, V_{GS}=15V
- Target $\Delta T = 100^{\circ}$ C
- Constant timing and current regardless of the voltage change

I _{load}	160 A
Р	~530 W
ΔΤ	~100 °C
T _{Heating}	5.5 s
T _{Cooling}	22 s
Tmax	135 °C

Experiment IV. – Bond wire degradation

- Firs voltage drop increasing gradually
- Then stepwise voltage elevation can be observed

Experiment IV.b – Bond wire cut test

- I_{D max}=80A
- Device driven is saturation mode, V_{GS}=15V
- Limited heating current was used to ensure there is no degradation during the test

I _{load}	50 A
Р	~65 W
ΔΤ	~35 °C
T _{Heating}	0.5 s
T _{Cooling}	1.5 s

Transient test after every 900 power cycles

Experiment IV.b – Bond wire cut test

Experiment IV.b – Bond wire cut test

Concurrent failure modes

 In real applications it is likely that the two effects discussed above arise in parallel

Problem:

- The increasing bond resistance can be recognized on the voltage drop curve
- The change of the Rth indirectly affects the voltage drop at load current level
- In case of IGBTs due to the typically positive TCO at high current levels the direction of the change is identical
- Hard to separate the two effects

Concurrent failure modes – Experimental results

Conclusions

- The lifetime of a power device significantly depends on the intended application.
 - Mission profiles/driving profiles described
- Mentor Graphics' CFD simulation tools such as FloTHERM, FloTHERM XT or FloEFD allow users to understand the temperature changes during operation
 - Calibrated by physical tests
- The Power tester helps to create lifetime curves
 - Provide relationship between the device temperature change during power cycles and the cycle number to failure.
- Finally, we demonstrated an example workflow on how to calculate the expected lifetime
- Precise temperature calculations/measurements needed for accurate prediction